First-passage Brownian functionals with stochastic resetting

نویسندگان

چکیده

Abstract We study the statistical properties of first-passage time functionals a one dimensional Brownian motion in presence stochastic resetting. A functional is defined as V = ∫ 0 t f Z [ x stretchy="false">( τ stretchy="false">) stretchy="false">] where t f reset process x ( τ ), i.e., first crosses zero. In here, particle to R > 0 at constant rate r starting from and we focus on following functionals: (i) local ${T}_{\mathrm{l}\mathrm{o}\mathrm{c}}={\int }_{0}^{{t}_{\mathrm{f}}}\,\mathrm{d}\tau \delta (x-{x}_{R})$?> T mathvariant="normal">l mathvariant="normal">o mathvariant="normal">c mathvariant="normal">d δ − R , (ii) residence ${T}_{\mathrm{r}\mathrm{e}\mathrm{s}}={\int \theta mathvariant="normal">r mathvariant="normal">e mathvariant="normal">s θ (iii) form ${A}_{n}={\int {[x(\tau )]}^{n}$?> A n with n −2. For two functionals, analytically derive exact expressions for moments distributions. Interestingly, reach minima some optimal resetting rates. similar phenomena also observed . Finally, show that distribution large decays exponentially $\sim \!\!\mathrm{exp}\left(-{A}_{n}/{a}_{n}\right)$?> ∼ width="-0.20em" exp / a all values corresponding decay length estimated. particular, passage under (which corresponds = case) derived shown be exponential limit accordance generic observation. This behavioural drift underlying can understood ramification due mechanism which curtails undesired long trajectories leads an accelerated completion. confirm our results high precision by numerical simulations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First Passage Time of Skew Brownian Motion

Nearly fifty years after the introduction of skew Brownian motion by Itô and McKean (1963), the first passage time distribution remains unknown. In this paper, we first generalize results of Pitman and Yor (2001) and Csáki and Hu (2004) to derive formulae for the distribution of ranked excursion heights of skew Brownian motion, and then use this result to derive the first passage time distribut...

متن کامل

Normalized functionals of first passage Brownian motion and a curious connection with the maximal relative height of fluctuating interfaces

A study is made of the normalized functionals 2 / 1 /T M  M and 2 / 3 /T A  A associated with one-dimensional first passage Brownian motion with positive initial condition, where M is the maximum value attained and A is the area swept out up to the random time T at which the process first reaches zero. Both M and A involve two strongly correlated random variables associated with a given Brown...

متن کامل

Diffusion with stochastic resetting.

We study simple diffusion where a particle stochastically resets to its initial position at a constant rate r. A finite resetting rate leads to a nonequilibrium stationary state with non-Gaussian fluctuations for the particle position. We also show that the mean time to find a stationary target by a diffusive searcher is finite and has a minimum value at an optimal resetting rate r*. Resetting ...

متن کامل

On the Brownian First-Passage Time Over a One-Sided Stochastic Boundary

Let B = (B t) t0 be standard Brownian motion started at 0 under P , let S t = max 0rt B r be the maximum process associated with B , and let g : R + ! R be a (strictly) monotone continuous function satisfying g(s) < s for all s 0. Let be the first-passage-time of B over t 7 ! g(S t) : = inf 8 t > 0 j B t g(S t) 9. Let G be the function defined by: G(y) = exp 0 Z g 01 (y) 0 ds s0g(s) for y 2 R i...

متن کامل

Brownian excursions, stochastic integrals, and representation of Wiener functionals

A stochastic calculus similar to Malliavin’s calculus is worked out for Brownian excursions. The analogue of the Malliavin derivative in this calculus is not a differential operator, but its adjoint is (like the Skorohod integral) an extension of the Itô integral. As an application, we obtain an expression for the integrand in the stochastic integral representation of square integrable Wiener f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A

سال: 2022

ISSN: ['1751-8113', '1751-8121']

DOI: https://doi.org/10.1088/1751-8121/ac677c